CPSC 314 Computer Graphics

Dinesh K. Pai

L11
Frames in Graphics, continued..

Today

- Announcements
- Homework: Read textbook Chapter 5
- Quiz 1 will post to piazza to save class time
- Assignment 2 delayed, available later today
- All grades are made available through Connect>MyGrades
- Lecture
- Transformation about an auxiliary frame
- The Eye and "lookAt" matrices

Frames I catd...
10:03 AM
(1) Transfinm about an "auxiliang" frame

$$
\begin{equation*}
\underline{\omega} L \tag{1}
\end{equation*}
$$

How do I notate ahout origin of frame a ?
Simplest care, suppse you know point's coonds in $\underset{\sim}{\sim}$ (ignone $\frac{\tilde{o}}{}$)
fornow

$$
\begin{aligned}
\text { Phgin } \varepsilon_{q} \cdot(1) & \tilde{p}
\end{aligned}=\frac{\tilde{w}}{n} P_{w} .
$$

Appls
trhasformation $\tilde{p}^{\prime}=\tilde{a} M A^{\prime} P_{w}$
use ${ }^{\text {a }}$ (1) to set back to $\underset{\sim}{\omega}$

$$
=\tilde{w} A M A^{-1} P_{\omega}
$$

This is a "Similarity tramsformation"

A small senaclization. What if, as typical, youkmow \tilde{p} w.at.n.n and $\tilde{\underline{c}}$ w.at. objed frame $\hat{0}$?

That is, I'm siben

$$
\begin{align*}
\underline{\tilde{a}} & =\tilde{o} A \tag{2}\\
\text { and } \tilde{\tilde{p}} & =\tilde{\tilde{c}} p \tag{3}\\
\tilde{p}^{\prime} & =\tilde{a} M p \\
& =\tilde{o} A M p \\
& =\tilde{\omega} A M A M P
\end{align*}
$$

$$
\begin{gathered}
\text { Canet }+t_{1} \check{O} \\
\text { with } s_{1}(2)
\end{gathered}
$$

$$
\begin{aligned}
& \text { with } \varepsilon_{9}(2) \\
& \text { commet }
\end{aligned}
$$

The "look At" mactrix Exists in all flavens of $O_{\text {pen }} \mathrm{L} L$ (bak has bugs) $\vec{\rightharpoonup}$ $\uparrow \vec{u}$ "up vectun"
 input: $\tilde{r}, \tilde{q}, \bar{n}$ outpat: Eye matix with $\vec{\zeta}$ ac chose

$$
\begin{aligned}
& E=[x|+n| 2 \mid p] \\
& \vec{z}=\text { manamaje }(\tilde{p}-\tilde{q}) \\
& \vec{x}=\text { namandije }(\vec{u} \times \vec{z}) \\
& \vec{y}=\vec{z} \times \vec{x}
\end{aligned}
$$

$\left(\begin{array}{c}\text { nonmalijatik } \\ \text { is sptimal } \\ \text { hae }\end{array}\right)$
The lookat on Vien matrix is E^{-1} (see Lec. 10)

Issues with Textbook's "IookAt"

- Book description in 5.2.3 has a bug, fixed in online Errata (make this and other corrections in your textbook copy)
- z = normalize ($\mathrm{p}-\mathrm{q}$)
$x=$ normalize $(u \times z)$ $y=(z \times x)$
- The book's "lookAt" should be called "eye" E matrix. It is the inverse of Three.js's camera.lookAt() method $E^{-1} \equiv V i e w M a t r i x$
- The author is aware of these issues, will fix it in future editions

