Cameras - Projection
October 6, 2017 9:57 AM
The textbook discussion is different from mine
To simplify presentation, mostly hook at 2D

$$
\begin{aligned}
& \text { "sues" } \\
& \text { "Window" } \\
& \bar{p}=\left(\begin{array}{l}
y_{p} \\
z_{p} \\
1
\end{array}\right)=? \quad z_{p}=-1 \quad \text { by design } \quad \begin{array}{lll}
y_{p} & y_{p}=-\frac{y}{z} & \text { because } \\
& \frac{-1}{y}
\end{array} \\
& x \text { will he have } \\
& \text { similar to } y
\end{aligned}
$$

This is a mon-linea transom! (similar triagles)
Good News: homogeneous coordinates can handle this
\qquad
\qquad
§ Orthographic Projection

- simpler than the perspective / centred projection
- We' μ convent central paojection into this.
- Useful in applications in Architecture and Engimening

Project par allee to

$$
\overrightarrow{\mathrm{z}_{l}}
$$

What loses the pajectim matrix look like?

$$
\left(\begin{array}{l}
y \\
2 \\
1
\end{array}\right) \xrightarrow{N}\left(\begin{array}{l}
y \\
0 \\
1
\end{array}\right) \quad N=\left(\begin{array}{ll|l}
1 & & \\
& 0 & \\
\hline & & 1
\end{array}\right)
$$

To vies the "view frustum" (box in this case) we want to transform it eventually to fit on the screen.
So we transform the bon into "Nanmalijed Device Coordinates"

Step 1: Translate the "View Box" to origin

Move t arision using

$$
T=\left[\begin{array}{ll|l}
1 & & -\frac{t+6}{2} \\
& 1 & -\frac{x+t}{2} \\
\hline & & 1
\end{array}\right]
$$

Step 1: Translate the "View Box "to origin

Move to arision using

$$
T=\left[\begin{array}{cc|c}
1 & -\frac{t+b}{2} \\
& 1 & -\frac{2+t}{2} \\
\hline & 1
\end{array}\right]
$$

Step 2: Scale to make the half-sije $=1$
es. along y box is $\frac{t-b}{2} \rightarrow 1$

$$
S=\left[\begin{array}{cc|c}
\frac{2}{t-6} & & \\
& \frac{2}{x-f} & \\
\hline & & 1
\end{array}\right]
$$

Parjectiom matrix

$$
P_{0}=S T=\left[\begin{array}{cc|c}
\frac{2}{t-b} & & -\frac{t+b}{t-6} \\
& \frac{2}{n-f} & -\frac{m+f}{m-f} \\
\hline & & \frac{1}{1}
\end{array}\right]
$$

Exencuise: do this for the x-crondimate

Puspective
October 6, 2017 10:46 AM
 Transformation ("unhinging" transfer)
Depth information is retained, ever though disturbed

