Vertex to Pixel

A brief introduction
Textbook Chapter 12 (some slides courtesy of Min Kim)

Today

- Announcements
- Assignment 2 progress?

Deadline extended to midnight Sunday!
(but note that TAs and Instructor not available on weekends)

- Signup sheet for grading is available
- Quiz 2 is next week! Wednesday, in class
- Final exam scheduled: DEC 192017 07:00 PM
(sorry... I don't control the scheduling)
- Lecture
- Quiz 2 prep
- Wrap up projection and depth
- Vertex to Pixel (Ch. 12)

Quiz 2 Preparation

- In class, Wednesday Oct 18. Please be on time.
- Review lecture notes, and assignments.
- Everything covered in lecture could be on the exam
- Everything covered in listed textbook chapters could be on the exam

Quiz 2 Preparation

- Textbook. Read ALL of these except as noted
- Ch 4 Respect
- Ch 5, except 5.4 Hierarchies of transformations
- Ch 10 Projection. Mainly focus on lecture notes
- Ch 11 Depth. Mainly focus on lecture notes
- Ch 12 From Vertex to Pixel
- Topics from Quiz 1 (especially Ch 3) will be assumed as pre-requisites (e.g., it is assumed you now know coordinate frames and how to transform them)

Quiz 2 Preparation Tips

- Format will be similar to Quiz 1
- Expect 2D problems. E.g., will ignore x coordinate and have just y and z basis vectors. Homogeneous coordinates will be $2+1=3$ dimensions, etc.

E.g., What are the coordinates of point P in frame A, B, and C ?
E.g., Define one coordinate frame with respect to another

* Rotations

Quiz 2 Preparation Tips

- Section 5.2 is very important, since it uses transformations in the most common ways in computer graphics, e.g., different versions of doMtoOwrtA (see p. 46 of book). Make sure you understand this section.
- Know inverses of simple transformations, e.g.,
- Translation by t

- rotation about an axis by theta $\operatorname{Rot}(\hat{n}, \theta) \rightarrow R_{\partial} t(\hat{a},-\theta)$
- scale by s

- Review basic Three.js and GLSL functions you used in assignments

Wrap up Projection e Depth
See puerino dass
Paojective Transfmation presenve

- Straightmess of lines
- Intusections
- Ondur of point alons \vec{z}

Put $L 13$ \& L14 togithen to puduce P

$$
P=P_{0} \cdot P_{u}
$$

Amost done: But after P_{a}, top, bottom, mea, fon, enft, night chamge.

$$
\operatorname{top}=\tan \frac{\theta}{2} \quad n \rightarrow-\frac{1}{n}
$$

use those quantitics in P_{0}
Try this at home.
I'll give you a handout to chock.
§Depth a frn Puspective Projectin (an'I)

Wcte: (1) Mmotomic,
so orduris presured
(2) 2 mun resolution a.s depth incranes

Path from vertex to pixel

Rasterization

- This is part of the fixed function pipeline
- There are very clever and sophisticated algorithms underneath the hood, but most users just set a few knobs using OpenGL function calls
- We will speed through these issues for now, with the goal of getting to the fun topic of lighting asap!
- We may return to some of these issues at the end of the course, if we have time

Clipping coordinates

- Eye coordinates (projected) \rightarrow clip coordinates \rightarrow normalized device coordinates (NDCs)
- Dividing clip coordinates $\left(x_{c}, y_{c}, z_{c}, w_{c}\right)$ by the $w_{c}\left(w_{c}=w_{n}\right)$ component (the fourth component in the homogeneous coordinates) yields normalized device coordinates (NDCs).
$\left[\begin{array}{l}x_{n} w_{n} \\ y_{n} w_{n} \\ z_{n} w_{n} \\ w_{n}\end{array}\right]=\left[\begin{array}{l}x_{c} \\ y_{c} \\ z_{c} \\ w_{c}\end{array}\right]=\left[\begin{array}{cccc}s_{x} & 0 & -c_{x} & 0 \\ 0 & s_{y} & -c_{y} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\ 0 & 0 & -1 & 0\end{array}\right][$

Viewport matrix

- We need a transform that maps the lower left corner to $[-0.5,-0.5]^{t}$ and upper right corner to $[W-0.5, H-0.5]^{t}$
- The appropriate scale and shift can be done using the viewport matrix:

$$
\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
W / 2 & 0 & 0 & (W-1) / 2 \\
0 & H / 2 & 0 & (H-1) / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{n} \\
y_{n} \\
z_{n} \\
1
\end{array}\right]
$$

