2017-09-08

CPSC 314
Computer Graphics

Dinesh K. Pai

A first look at the Graphics Pipeline
and WebGL

Many slides courtesy of Min Hyuk Kim, KAIST and Steven Gortler, Harvard

Announcements

= Today:
= Introduction to the OpenGL Graphics Pipeline

= Intro to programming with GLSL, WebGL, Three.js
(Assignment 1)

= Assignment 1 out very soon.
= See <coursepage>/resources.html

What is OpenGL/WebGL?

= OpenGL = Open Graphics Library
= An open industry-standard API for hardware
accelerated graphics drawing
= Implemented by graphics-card vendors
= Maintained by the Khronos group
= OpenGL ES = Embedded Systems version of
OpenGL with reduced functions

= WebGL 1.0 is based on OpenGL ES 2.0,
accessible from JavaScript

= Same underlying graphics architecture

OpenGL Pipeline

= Reference:
Textbook Chapter 1

= Shapes are “discretized”
into primitives:
triangles, line segments, ...
= We’'ll focus on triangles most of the time

2017-09-08

OpenGL Pipeline: Vertex Shader

Uniform variables

® ©® o o lvertexshader| & © © o
Attributes gl_Position
Varying variables
Vertex buffer Assembler

Vertices are stored in a vertex buffer.

When a draw call is issued, each of the vertices passes
through the vertex shader

On input to the vertex shader, each vertex (black) has
associated attributes.

On output, each vertex (cyan) has a value for gl_Position
and for its varying variables.

OpenGL Pipeline: Rasterization

YY) o|of|o|lo|o|ocgle|@|®@N\e|o]| e >
i oleolele]el|le]|e[™le of e : p

gl_Position o[Varying variables

Varyingvariables | ° | ° | °1°|°|°]°}°|°|°

Assembler

Rasterizer

The data in gl_Position are used to place the three
vertices of the triangle on a virtual screen.

The rasterizer figures out which pixels (orange) are
inside the triangle and interpolates the varying
variables from the vertices to each of these pixels.

6

2017-09-08

OpenGL Pipeline: Fragment
Shader

Uniform variables

s ol Fragment shader | 2°**°°°

Varying variables Screen color °

Frame buffer

= Each pixel (orange) is passed through the
fragment shader, which computes the final color of

the pixel (pink).
= The pixel is then placed in the framebuffer for
display.

OpenGL Pipeline: Fragment
Shader

= By changing the fragment shader, we can simulate
light reflecting off of different kinds of materials.

2017-09-08

2017-09-08

A brief look at Three.js

A high level library that can use WebGL for
rendering

= Can also use the basic HTMLS5 canvas for simple
things

Setup is much easier compared to WebGL
Implements “scene” and “mesh” abstractions

Mesh = geometry + material properties
= Warning: this usage of “mesh” is non-standard

Scene contains a hierarchy of mesh objects
Render a scene using a Camera

Demo

http://mrdoob.com/projects/htmleditor/

Summary

= What is OpenGL/WebGL?

= A software interface that allows a programmer to
communicate with the graphics hardware
= A programming interface for rendering 2D and 3D
graphics
= A cross-language multi-platform API for computer
graphics
= Whatis Three.js

= A high level JavaScript library that provides easy
setup and access to WebGL

Important Point!

= |n this course we will use WebGL and Three.js
to understand the principles of 3D computer
graphics

= This is NOT a course about programming with
WebGL and Three.js

= Qur primary focus will be on writing small
shaders in GLSL to implement the key concepts
of a computer graphics application

12

2017-09-08

2017-09-08

Introduction to Assignment 1

= Switch to demo

13

How to get started..

= First download assignment template and ensure
that it runs in your preferred browser. See

https://threejs.org/docs/#manual/introduction/Ho
w-to-run-thing-locally

DO THIS ASAP!

= Work on the different parts in sequence. Later
parts will need material covered later this week.

14

The good news

= Even though there are lots of details and
options, a few useful things go a long way.

= After initial setup, most of your effort will be on
translating graphics concepts into code

= For Assignment 1, this is already setup for you.
You mainly have to focus on the vertex shader.

15

* UBC CPSC 314, V3jan2015
* Ooutline of a Three.js program for this course

= new THREE.WebGLRenderer():;

new THREE.PerspectiveCamera (30, 1, 0.1, 1000):
1 = new THREE.ShaderMaterial ({

Position: gemPosition},
<VertexShaderSource>,
r: <FragmentShaderSource>

:w THREE.SphereGeometry(1l, 32, 32);
var gem = new THREE.Mesh (gemGeometry, gemMaterial);

scene,add (gem) ;

// SETUP UPDATE CALL-BACK
function update() ({
requestAnimationFrame (update) ;
renderer.render (scene, camera);
}
update () ;
16

= new THREE.Scene();

2017-09-08

Minimalist shaders

vertex shader

uniform vec3 gemPosition;
ing vec3 color;
oid main() {

color = normal;
b

fragment shader

varying vec3 color;
void main() {

FragColor = vec4 (normalize(color), 1.0);

sition = projectionMatrix * modelViewMatrix * wvec4d (position, 1.0);

17
Next class
= Wrap up introduction and Assignment 1
discussion
= Make sure you’ve read Chapter 1 of textbook
= 3D Math for Graphics
= Read Chapter 2, Chapter 3 up to 3.5.
18

2017-09-08

