
2017‐11‐08

1

Depth and Shadows

Dinesh K. Pai

Textbook Chapter 11

Several slides courtesy of M. Kim

1

Today

 Announcement: A4 will be available later today
 Demo

 Depth and Shadows

2

2017‐11‐08

2

Depth Demo

 https://threejs.org/docs/#api/materials/MeshDept
hMaterial

3

Visibility

 In the real world, opaque objects block light.
 We need to model this computationally.
 One idea is to render back to front and use

overwriting
 This will have problem with visibility cycles.

4

2017‐11‐08

3

Visibility

 We could explicitly store everything hit along a ray
and then compute the closest.
 Make sense in a ray tracing setting, where we are

working one pixel per ray at time, but not for OpenGL,
where we are working one triangle at a time.

5

Z-buffer

 We will use z-buffer (or depth buffer)

 Triangles are drawn in any order

 Each pixel in frame buffer stores ‘depth’ value of
closest geometry observed so far.

 When a new triangle tries to set the color of a
pixel, we first compare its depth to the value
stored in the z-buffer.

 Only if the observed point in this triangle is
closer, we overwrite the color and depth values
of this pixel.

6

2017‐11‐08

4

Z-buffer

 This is done per-pixel, so there is no cycle
problem.

 There are optimizations, where z-testing is done
before the fragment shading is done.

7

Other uses of visibility
calculations

 Visibility to a light source is useful for shadows.

 Visibility computation can also be used to speed
up the rendering process.
 If we know that some object is occluded from the

camera, then we don’t have to render the object in
the first place.

 We can use a conservative test.

8

2017‐11‐08

5

Shadow mapping

 First pass: create “shadow map”, a z-buffer
image from the point of view of the light

 Second pass: check if fragment is visible to the
light using shadow map.

9

Shadow mapping

 If a point observed by the eye is not observed
by the light, then there must be some occluding
object in between, and we should draw that
point as if it were in shadow.

10

2017‐11‐08

6

Shadow mapping
 In a first pass, we render into an FBO the scene

as observed from some camera whose origin
coincides with the position of the point light
source. Let us model this camera transform as:

for appropriate matrices, .

11

xtwt

ytwt

ztwt

wt

 PsMs

xo

yo

zo

1

Ps and M s

Shadow mapping

 During this first pass, we render the scene to an
FBO using as the modelview matrix
and as the projection matrix.

 In the FBO we store, not the color of the point,
but rather its “depth value”.

 Due to z-buffering, the data stored at a pixel in
the FBO (depth value), is a monotone function
of . This FBO is then transferred to a texture.

12

M s

Ps

zt

2017‐11‐08

7

Shadow mapping

 During the second rendering pass, we render our
desired image from the eye’s point of view, but for
each pixel, we check and see if the point we are
observing was also observed by the light, or if it was
blocked by something closer in the light’s view.

 To do this, we use the same computation that was
done with projector texture mapping

 Doing so, in the fragment shader, we can obtain the
varying variables associated with the
point .

13

xt , yt and zt

[xo, yo, zo,1]t

