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Textbook Chapters 15.4, 16

Several slides courtesy of M. Kim
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Today

 Announcements
 No class on Monday. Remembrance Day

 Reminder: Quiz 3 on Friday Nov 17

 I will post a couple of Quiz 3 practice questions on 
Piazza by Tuesday. Will discuss answers on 
Wednesday

 Projector Texture mapping

 Sampling and Aliasing
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Projector texture mapping
 There are times when we wish to glue our 

texture onto our triangles using a projector
model, instead of the affine gluing model.

 For example, we may wish to simulate a slide 
projector illuminating some triangles in space.
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Geometry of Projector Textures
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Transformations are similar to shadow mapping 
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Projector texture mapping
 The slide projector is modeled using 4 by 4, 

modelview and projection matrices, 
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Projector texture mapping
 With the texture coordinates defined as 

 To color a point on a triangle with object 
coordinates                     , we fetch the texture 
data stored at location 
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Projector texture mapping

 The three quantities                                are all 
affine functions of                    . Thus these 
quantities will be properly interpolated over a 
triangle when implemented as varying variables. 

 In the fragment shader, we need to divide by      
to obtain the actual texture coordinates.

 When doing projector texture mapping, we do 
not need to pass any texture coordinates as 
attribute variables to our vertex shader.

7
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Projector texture mapping

 We simply use the object coordinates already 
available to us, and compute the texture 
coordinates.

 We do need to pass in, using uniform variables, 
the necessary projector matrices.
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Projector texture mapping
 Projector vertex shader
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#version 330

uniform mat4 uModelViewMatrix;
uniform mat4 uProjMatrix;

uniform mat4 uSProjMatrix;
uniform mat4 uSModelViewMatrix;

in vec4 aVertex;
out vec4 vTexCoord;

void main(){
vTexCoord = uSProjMatrix * uSModelViewMatrix * aVertex;
gl_Position = uProjMatrix * uModelViewMatrix * aVertex;

} 

Vertex shader generates
texture coordinates!
But not normalized

Projector texture mapping
 Projector fragment shader
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#version 330

uniform sampler2D vTexUnit0;

in vec4 aTexCoord;
out vec4 fragColor;

void main(){
vec2 tex2;
tex2.x = vTexCoord.x/vTexCoord.w;
tex2.y = vTexCoord.y/vTexCoord.w;
vec4 texColor0 = texture2D(vTexUnit0, tex2);
fragCoor = texColor0;

} 
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Projector texture mapping

 Conveniently, OpenGL even gives us a special 
call texture2DProj(vTexUnit0, pTexCoord), that 
actually does the divide for us.

 Inconveniently, when designing our slide 
projector matrix uSProjMatrix, we have to deal 
with the fact that the canonical texture image 
domain in OpenGL is the unit square, whose 
lower left and upper right corners have 
coordinates                               used for the 
display window.
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[0,0]t  and [1,1]t

Texture mapping tips and 
learning resources

 Read Texture Viewport (Textbook 12.3) 

 Check out this excellent demo of transformations:
http://www.realtimerendering.com/udacity/transforms.ht
ml

 Nice online animations of many things we cover in this 
course, esp. related to textures 
http://acko.net/files/fullfrontal/fullfrontal/webglmath/online
.html
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Sampling

15

Two views of images

 A continuous image, , is a bivariate 
function.
 range is a linear color space.

 A discrete image I[i][j] is a two dimensional array 
of color values.

 We associate each pair of integers i, j, with the 
continuous image coordinates                             
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I(xw , yw )

xw  i and yw  j
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Sampling

 The simplest and most obvious method to go 
from a continuous to a discrete image is by point 
sampling.

 To obtain the value of a pixel i, j, we sample the 
continuous image function at a single integer 
valued domain location:

 This can results in unwanted artifacts.
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I[i][j] I (i, j)

Aliasing and anti-aliasing
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Aliasing

Anti-aliasing
(multi-sampling)

Anti-aliasing
(super-sampling)
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Aliasing

 Scene made up of black and white triangles: 
jaggies at  boundaries
 Jaggies will crawl during motion

 If triangles are small enough
then we get random values
or weird patterns.
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Aliasing
 The heart of the problem: too much information 

in one pixel
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Anti-aliasing
 Intuitively: the single sample is a bad value,

we would be better off setting the pixel value
using some kind of average value over some 
appropriate region.

 In the above examples, perhaps some gray 
value.
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Anti-aliasing

 Mathematically this can be modeled using 
Fourier analysis.
 Breaks up the data by “frequencies” and figures out 

what to do with the un-representable high 
frequencies.
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Box filter

 We often choose the filters                  to be 
something non-optimal, but that can more easily 
computed with.

 The simplest such choice is a box filter, where
is zero everywhere except over the 1-

by-1 square center at                      .

 Calling this square           , we arrive
at
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Fi, j (x, y)

Fi, j (x, y)
x  i, y  j

(i, j) (x, y)

i, j

I[i][j] I (x, y)
i , j
 dxdy

Box filter
 In this case, the desired pixel value is simply the 

average of the continuous image over the pixel’s 
square domain.
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Over-sampling

 Even that integral is not really easy to compute
 Instead, it is approximated by some sum of the 

form:

where k indexes some set of locations 
called the sample locations.

 The renderer first produces a “high resolution” color 
and z-buffer “image”,
 where we will use the term sample to refer to each of 

these high resolution pixels.
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