
2017‐11‐10

1

Projector Textures,
Sampling 1

Dinesh K. Pai

Textbook Chapters 15.4, 16

Several slides courtesy of M. Kim

1

Today

 Announcements
 No class on Monday. Remembrance Day

 Reminder: Quiz 3 on Friday Nov 17

 I will post a couple of Quiz 3 practice questions on
Piazza by Tuesday. Will discuss answers on
Wednesday

 Projector Texture mapping

 Sampling and Aliasing

2

2017‐11‐10

2

Projector texture mapping
 There are times when we wish to glue our

texture onto our triangles using a projector
model, instead of the affine gluing model.

 For example, we may wish to simulate a slide
projector illuminating some triangles in space.

3

Geometry of Projector Textures

4

Transformations are similar to shadow mapping

2017‐11‐10

3

Projector texture mapping
 The slide projector is modeled using 4 by 4,

modelview and projection matrices,

5

Ms and Ps
xtwt

ytwt


wt





















 PsMs

xo

yo

zo

1





















Projector texture mapping
 With the texture coordinates defined as

 To color a point on a triangle with object
coordinates , we fetch the texture
data stored at location

6

xt 
xtwt

wt

 and yt 
ytwt

wt

[xo, yo, zo,1]t

[xt , yt]
t

2017‐11‐10

4

Projector texture mapping

 The three quantities are all
affine functions of . Thus these
quantities will be properly interpolated over a
triangle when implemented as varying variables.

 In the fragment shader, we need to divide by
to obtain the actual texture coordinates.

 When doing projector texture mapping, we do
not need to pass any texture coordinates as
attribute variables to our vertex shader.

7

xtwt , ytwt and wt
(xo, yo, zo)

wt

Projector texture mapping

 We simply use the object coordinates already
available to us, and compute the texture
coordinates.

 We do need to pass in, using uniform variables,
the necessary projector matrices.

8

2017‐11‐10

5

Projector texture mapping
 Projector vertex shader

9

#version 330

uniform mat4 uModelViewMatrix;
uniform mat4 uProjMatrix;

uniform mat4 uSProjMatrix;
uniform mat4 uSModelViewMatrix;

in vec4 aVertex;
out vec4 vTexCoord;

void main(){
vTexCoord = uSProjMatrix * uSModelViewMatrix * aVertex;
gl_Position = uProjMatrix * uModelViewMatrix * aVertex;

}

Vertex shader generates
texture coordinates!
But not normalized

Projector texture mapping
 Projector fragment shader

10

#version 330

uniform sampler2D vTexUnit0;

in vec4 aTexCoord;
out vec4 fragColor;

void main(){
vec2 tex2;
tex2.x = vTexCoord.x/vTexCoord.w;
tex2.y = vTexCoord.y/vTexCoord.w;
vec4 texColor0 = texture2D(vTexUnit0, tex2);
fragCoor = texColor0;

}

2017‐11‐10

6

Projector texture mapping

 Conveniently, OpenGL even gives us a special
call texture2DProj(vTexUnit0, pTexCoord), that
actually does the divide for us.

 Inconveniently, when designing our slide
projector matrix uSProjMatrix, we have to deal
with the fact that the canonical texture image
domain in OpenGL is the unit square, whose
lower left and upper right corners have
coordinates used for the
display window.

11

[0,0]t and [1,1]t

Texture mapping tips and
learning resources

 Read Texture Viewport (Textbook 12.3)

 Check out this excellent demo of transformations:
http://www.realtimerendering.com/udacity/transforms.ht
ml

 Nice online animations of many things we cover in this
course, esp. related to textures
http://acko.net/files/fullfrontal/fullfrontal/webglmath/online
.html

12

2017‐11‐10

7

Sampling

15

Two views of images

 A continuous image, , is a bivariate
function.
 range is a linear color space.

 A discrete image I[i][j] is a two dimensional array
of color values.

 We associate each pair of integers i, j, with the
continuous image coordinates

16

I(xw , yw)

xw  i and yw  j

2017‐11‐10

8

Sampling

 The simplest and most obvious method to go
from a continuous to a discrete image is by point
sampling.

 To obtain the value of a pixel i, j, we sample the
continuous image function at a single integer
valued domain location:

 This can results in unwanted artifacts.

17

I[i][j] I (i, j)

Aliasing and anti-aliasing

18

Aliasing

Anti-aliasing
(multi-sampling)

Anti-aliasing
(super-sampling)

2017‐11‐10

9

Aliasing

 Scene made up of black and white triangles:
jaggies at boundaries
 Jaggies will crawl during motion

 If triangles are small enough
then we get random values
or weird patterns.

19

Aliasing
 The heart of the problem: too much information

in one pixel

20

2017‐11‐10

10

Anti-aliasing
 Intuitively: the single sample is a bad value,

we would be better off setting the pixel value
using some kind of average value over some
appropriate region.

 In the above examples, perhaps some gray
value.

21

Anti-aliasing

 Mathematically this can be modeled using
Fourier analysis.
 Breaks up the data by “frequencies” and figures out

what to do with the un-representable high
frequencies.

22

2017‐11‐10

11

Box filter

 We often choose the filters to be
something non-optimal, but that can more easily
computed with.

 The simplest such choice is a box filter, where
is zero everywhere except over the 1-

by-1 square center at .

 Calling this square , we arrive
at

26

Fi, j (x, y)

Fi, j (x, y)
x  i, y  j

(i, j) (x, y)

i, j

I[i][j] I (x, y)
i , j
 dxdy

Box filter
 In this case, the desired pixel value is simply the

average of the continuous image over the pixel’s
square domain.

27

2017‐11‐10

12

Over-sampling

 Even that integral is not really easy to compute
 Instead, it is approximated by some sum of the

form:

where k indexes some set of locations
called the sample locations.

 The renderer first produces a “high resolution” color
and z-buffer “image”,
 where we will use the term sample to refer to each of

these high resolution pixels.

28

I[i][j]
1

n
I(xk , yk)

k1

n


(xk , yk)

