CPSC 314
Computer Graphics

Dinesh K. Pai

Nuts and bolts of graphics
programming

Announcements

= Today:
= Assignment 1
= Programming with WebGL and GLSL

2017-09-11

= Assignment 1 demo

Assignment 1

= First thing: download template from repository
and get it running locally on your computer.

= There are lots of details in the template that you
can ignore till later in the course. Skim the
general structure. Look for comments “HINT” or
“YOUR WORK”

= Make small modifications (a few of lines of
code) to the shaders, and understand how to
pass information from a JavaScript program to
the shaders

2017-09-11

Recap Pipeline: Vertex Shader

Vertex buffer

Assembler

= Read last lecture and Textbook Chapter 1!

Uniform variables

o000
000
00
o0
[XX]
® ® o o Ivertexshader| & _© © o
Attributes gl_Position
Varying variables
Assembler
o .\u o | o
(XX] o ®|® [\°]|-° 2000000
gl_Position o[- [Varying variables
Varying variables | ° | * [° | ° o TRe e
Rasterizer

Recap Pipeline: Fragment Shader

TXY)

—_
Varying variables

Uniform variables

Fragment shader

Screen color

Frame buffer

2017-09-11

A closer look at GLSL shaders

Handy reference:

https://www.khronos.org/files/webgl/we
bgl-reference-card-1 0.pdf

Pages 3 and 4 cover GLSL

GLSL

= OpenGL shading language

= C-like, w. data types and functions useful for graphics

= vec3, vec4, dvec4, mat4, sampler2D ...
(OpenGL data are floats unless qualified)

= <matrix-vector multiplication>, reflect, refract
= Used for both vertex shaders and fragment shaders,
with small differences

= WebGL 1.0 uses GLSL 1, compatible with Open GL
ES 2.0. We use this in our course.

= WebGL 2.0 has recently been released with many
advanced features (compatible with Open GL ES 3.0)
but not widely available yet.

8

2017-09-11

Summary of Key GLSL Concepts (1)

= ‘uniform’ type qualifier: Same for all vertices

= ‘attribute’ type qualifier: per vertex data

= ‘varying’ type qualifiers: configure data flow in
the pipeline.

= Qutput of vertex shader, input to fragment shader
(after interpolation)

= gl_Position is built-in output variable that must
be set before rasterization

Summary of Key GLSL Concepts (2)

= Support for geometry, vector and matrix
arithmetic
= |length, distance, dot, cross, normalize, reflect

= Compiled by WebGL, at runtime

10

2017-09-11

Three.js support

= THREE.ShaderMaterial() lets you set shaders,
uniforms

= Built-in uniforms and attributes. See
https://threejs.org/docs/#api/renderers/webgl/W
ebGLProgram

= Some vertex attributes
= position, normal, and uv

= Some uniforms
= modelView matrix and cameraPosition

H‘ UBC cPSC 314, Vjan2015
* Qutline of a Three.js program for this course
w /
// SCENE
___war scene = new THREE.Scene();
Fir RENDERER
wvar renderer = new THREE.WebGLRenderer():

/7
3 ew THREE.PerspectiveCamera (30, 1, 0.1, 1000):

new THREE.ShaderMaterial ({
C osition: gemPosition},

: <VertexShaderSource>,

er: <FragmentShaderSource>

new THREE.SphereGeometry(l, 32, 32);
new THREE.Mesh (gemGeometry, gemMaterial);
scene.add (gem) ;

// SETUP UPDATE CALL-BACK

function update() ({
requestAnimationFrame (update) ;
renderer.render (scene, camera);

}
update () ;

12

2017-09-11

Minimalist shaders

}

fragm

vertex shader

void main{) {
color = normal;
gl Position = projectionMatrix * modelViewMatrix * vecd (position, 1.0);

ent shader

1.0);

13

ShaderMaterial Example

var material = new THREE.ShaderMaterial({

uniforms: {
time: { type: "f", value: 1.0 },
resolution: { type: "v2", value: new THREE.Vector2() }

1
3

attributes: {
vertexOpacity: { type: 'f', value: [])

vertexShader: document.getElementById('vertexShader').textContent,

fragmentShader: document.getElementById('fragmentShader').textContent

[£2)

https://threejs.org/docs/#api/materials/ShaderMaterial

14

2017-09-11

Animation (infinite) Loop

// SETUP UPDATE CALL-BACK

function update() {
requestAnimationFrame(update); // next frame
renderer.render(scene, camera);

}

/I Do this last
update();

15

Debugging your program

= Debugging GLSL programs can be challenging.
Keep calm. Many problems are due to strict
typing. E.g., float literals must use decimal point

= Good news: easy to run and see results. No
compilation step. Test code as you write it.

= Browsers provide some tools for JavaScript
debugging, but not for GLSL programs
= Toggle console with, e.g., <F12>
= Reload page with CTRL-R

16

2017-09-11

Next

= Geometry 1: Points and Vectors
= Homework: read Textbook Chapter 2

17

2017-09-11

