CPSC 314 Computer Graphics

Dinesh K. Pai

Two views of rotations.
Frame Transformations

Announcements

- Quiz 1 and Assignment1 handback slightly delayed. Will be done by the end of the week
- Assignment 2 available later this week.
- Homework for today:
- Read extbook Chapter 4, 5

Rotations, again
September 27, 2017 9:59 AM
\bar{R}
what is it afint the matrix that makes it a notation?
$\left\{\begin{array}{l}\text { Each column and now has length } 1 \\ \text { The columns and now are orthogonal }\end{array}\right.$
Such a matrix is called "Orthogonal" matrix
Terminology: "orthonormal" rufus to $\frac{\vec{b}, \overrightarrow{b_{i}} \overrightarrow{b_{j}}}{\vec{b}}$ "orthogonal" seers to a matuk.

Orthogonal matrices are nice!!

$$
\begin{aligned}
\underline{\bar{R}}^{\top} \underline{R} & =\underline{T} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\text { So } \quad \bar{R}^{-1} & =\bar{R}^{T}
\end{aligned}
$$

Reflections ane iso orthogonal, but not Rotation Rotations pureave "handedness"

$$
\operatorname{det}(\underline{R})=+1 \quad \text { Rotation }] \text { out possible }
$$

$$
\left.\begin{array}{rlrl}
\operatorname{det}(\underline{R}) & =+1 & & \text { Rotation } \\
& =-1 & & \text { Refectian }
\end{array}\right] \begin{aligned}
& \text { anh possible } \\
& \text { Orthinginal } \\
& \text { Matiices }
\end{aligned}
$$

Frame Transformations

\qquad
How to define a mew frame ${ }_{a}^{a}$, relative to a known frame Er?
The key is to realise that the physical point \bar{p} duesin't change

$$
\begin{aligned}
& \tilde{p}=\underline{b} \bar{p}=\tilde{a} \bar{p}^{\prime} \\
& \int_{\text {third }}^{\text {this }} \\
& \left(\begin{array}{lll}
\vec{a}_{x} & \vec{a}_{b} & \vec{a}_{2} \\
a_{0}
\end{array}\right) \\
& \left(\begin{array}{llll}
\tilde{b} \bar{a}_{x} & \tilde{b}_{\bar{a}} & \bar{a}_{y} & \underline{b} \\
\bar{a}_{z} & \tilde{b}^{\bar{b}} & \bar{a}_{0}
\end{array}\right) \\
& \underline{\underline{b}}\left(\bar{a}_{z}^{b}\left|\bar{a}_{y}\right| \bar{a}_{z} \mid \bar{a}_{0}\right)
\end{aligned}
$$

*

$$
\begin{aligned}
& \tilde{p}=\tilde{b}_{\text {given }} \bar{p}=\frac{\tilde{a}}{\bar{p}^{\prime}} \\
& \bar{p} \text { find }^{\alpha} \\
& \bar{p}=\overline{\tilde{A}} \overline{p_{p}} \overline{p^{\prime}} \\
& \bar{p}^{\prime} \\
& \bar{p}^{\prime}=(\overline{\bar{A}})^{-1} \bar{p}
\end{aligned}
$$

Two views of what we just did, ie.,

$$
\underline{b} \bar{p}=\underline{b}^{\underline{b}} \sqrt{\bar{A}} \bar{p}^{-1}
$$

(1) Defined a new frame \mathfrak{a}
(2) We moved \bar{p}^{\prime} by \bar{A} to get \bar{p}

